Tam giác

Bài này là bài số 59 trong 59 bài của series Tự học Toán 6

Kiến thức cơ bản

Tam giác ABC là hình gồm ba đoạn thẳng AB, BC, CA khi ba điểm A, B, C không thẳng hàng

Tam giác ABC có ba đỉnh A, B, C; có ba cạnh AB, BC, CA; có ba góc \widehat{A},  \widehat{B},  \widehat{C}

Trên hình. M là điểm nằm bên trong tam giác (điểm trong của tam giác), N là điểm nằm bên ngoài tam giác (điểm ngoài của tam giác)

Sai lầm cần tránh

SaiĐúng
Tam giác là hình gồm ba đoạn thẳng không cùng nằm trên một đường thẳngTam giác ABC là hình gồm ba đoạn thẳng AB, BC, CA khi ba điểm A, B, C không thẳng hàng
Lưu ý

Hình bên dưới cũng gồm ba đoạn thẳng không cùng nằm trên một đường thẳng nhưng không là tam giác

Có thể nói tam giác ABC là hình gồm ba đoạn thẳng “khép kín” không cùng nằm trên một đường thẳng

Câu hỏi trắc nghiệm

1) Cho hình. Có tất cả bao nhiêu tam giác

a) 3

b) 4

c) 5

d) 6

Hãy chọn phương án đúng

Đáp án

d)

2) Cho tam giác ABC. Đường thẳng m không đi qua các đỉnh của tam giác và cắt hai cạnh AB, BC. Điền vào chỗ trống (…) cho đúng

a) B và … nằm cùng phía đối với đường thẳng m

b) B và … nằm khác phía đối với đường thẳng m

Đáp án

a) Cb) A

Ví dụ minh họa

Mức độ cơ bản

Cho tam giác ABC\widehat{B}=80^o. Điểm M nằm giữa AC sao cho \widehat{ABM}=20^o. Trên nửa mặt phẳng chứa A có bờ BC, vẽ tia Bx sao cho \widehat{CBx}=30^o. Gọi K là giao điểm của tia BxAC

a) Tính số đo góc CBM

b) Chứng tỏ rằng Bxtia phân giác của góc CBM

c) Gọi I là điểm trong của tam giác BKC. Kể trên các tam giác nhận I là điểm trong

d) Kể trên các tam giác không có điểm trong chung

e) Có tất cả bao nhiêu tam giác trong hình vẽ

Đáp án

a) Tia BM nằm giữa hai tia BA, BC nên \widehat{ABM}+\widehat{CBM}=\widehat{ABC}, tức là 20^o+\widehat{CBM}=80^o. Suy ra \widehat{CBM}=80^o-20^o=60^o

b) Các tia BM, Bx nằm trên cùng một nửa mặt phẳng có bờ BC\widehat{CBx}<\widehat{CBM} (vì 30^o<60^o) nên tia Bx nằm giữa hai tia BC, BM suy ra \widehat{CBx}+\widehat{MBx}=\widehat{CBM}, tức là 30^o+\widehat{MBx}=60^o. Do đó \widehat{MBx}=60^o-30^o=30^o

Tia Bx nằm giữa hai tia BC, BM\widehat{CBx}=\widehat{MBx} nên Bx là tia phân giác của góc CBM

c) Có ba tam giác nhận I là điểm trong BKC, BMC, BAC

d) Có ba tam giác không có điểm trong chung BKC, BMK, BAM

e) Có tất cả sáu tam giác trong hình vẽ là BAM, BAK, BAC, BMK, BMC, BKC

Mức độ nâng cao

1) Có bao nhiêu tam giác trên hình bên dưới

Đáp án

Có tám tam giác là BEK, BKC, CDK, BEC, BCD, ACE, ABD, ABC

Lưu ý

Để đếm đầy đủ không trùng không sót ta có thể đếm như sau

– Có ba tam giác “đơn” (mảnh 1, mảnh 2 và mảnh 3)

– Có bốn tam giác “đôi” (mảnh 1 + 2, mảnh 2 + 3, mảnh 3 + 4 và mảnh 4 + 1)

– Có một tam giác “bốn” (mảnh 1 + 2 + 3 + 4)

2) Cho năm điểm A, B, C, D, E trong đó không có ba điểm nào thẳng hàng. Nối các điểm đó lại đôi một

a) Có bao nhiêu đoạn thẳng mà hai đầu là hai trong năm điểm trên? Kể trên các đoạn thẳng đó

b) Có bao nhiêu tam giác mà các đỉnh là ba trong năm điểm trên? Kể tên các tam giác đó

Đáp án

Các đoạn thẳngABACADAEBCBDBECDCEDE
Các tam giácCDEBDEBCEBCDADEACEACDABEABDABC

Có bao nhiêu cách chọn cặp hai điểm thì có bấy nhiêu cách chọn bộ ba điểm (ứng với một cách chọn cặp hai điểm, chẳng hạn AB thì có cách chọn bộ ba điểm còn lại CDE)

<< Đường tròn