Ứng dụng thực tế của tam giác đồng dạng

Bài này là bài số 58 trong 66 bài của series Tự học Toán 8

Kiến thức cơ bản

Sử dụng tam giác đồng dạng ta có thể xác định chiều cao, xác định khoảng cách bằng cách đo đạc gián tiếp

Xem thêm Khái niệm hai tam giác đồng dạng

Sai lầm cần tránh

Hai cột AB, CD cắm thẳng đứng trên sân vận động, có bóng trên mặt đất được chiếu bởi một ngọn đèn pha

SaiĐúng
Bóng của cột AB dài gấp bao nhiêu lần bóng của cột CD thì AB dài gấp bấy nhiêu lần CDCác tia sáng từ ngọn đèn pha chiếu đến hai cột không phải là các tia song song nên không đủ cơ sở để so sánh độ dài ABCD

Câu hỏi trắc nghiệm

Độ cao DE của cây bằng bao nhiêu nếu AC=1,5~m, AB=1,2~m, AD=4~m

a) 6,5~m

b) 5~m

c) 6~m

d) Một đáp số khác

Đáp án

a)

Ví dụ minh họa

Mức độ cơ bản

Để gióng đường thẳng từ A đến B bị che lấp bởi một khu nhà, người ta lấy một điểm O mà từ đó nhìn thấy cả AB. Lấy A' thuộc OA, B' thuộc OB sao cho OA'=\dfrac{1}{n}OA, OB'=\dfrac{1}{n}OB. Lấy C' thuộc A'B' rồi lấy C trên tia OC' sao cho OC=OC'.n. Chứng minh rằng ba điểm A, C, B thẳng hàng

Đáp án

Ta có \dfrac{OA}{OA'}=\dfrac{OC}{OC'}=\dfrac{OB}{OB'} nên AC \parallel A'C', CB \parallel C'B' (định lí Ta-lét đảo)

Qua C ta có CACB cùng song song với A'B' nên A, C, B thẳng hàng

Mức độ nâng cao

Hình bên dưới mô tả một thước vẽ truyền dùng để vẽ hình đồng dạng với một hình cho trước. Dụng cụ gồm bốn thước thẳng khớp vít với nhau tại A, B, C, D sao cho OC=AE, OB=BC=AD, AB=CD. Chứng minh rằng

a) Các tam giác OBCOAE đồng dạng

b) Các điểm O, C, E thẳng hàng

Đáp án

a) ABCD là hình bình hành nên \widehat{OBC}=\widehat{A}. Các tam giác cân OBC, OAE có cặp góc ở đỉnh bằng nhau nên đồng dạng (c.g.c)

b) Từ câu a) suy ra \widehat{BOC}=\widehat{AOE} do đó ba điểm O, C, E thẳng hàng

Nếu cố định điểm O thì khi mũi nhọn ở C vẽ một hình nào đó đầu bút chí ở E vẽ hình đồng dạng với hình ấy theo tỉ số \dfrac{OA}{OB}

<< Các trường hợp đồng dạng của tam giác vuôngHình hộp chữ nhật >>